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 ABSTRACT 

Background and Objectives Acute kidney injury is the main cause of morbidity and 
mortality in the worldwide that is accompanied by short-term and long-term complications, 
including chronic kidney disease, end-stage renal disease, and ultimately death. Various 
mechanisms are involved in renal dysfunction, including oxidative stress, inflammatory 
responses, apoptosis, fibrosis, and mitochondrial dysfunction. Trimetazidine as a drug with 
free radical oxygen scavenging property represents to be more invaluable against acute 
kidney injury. Trimetazidine is considered as an anti-ischemic drug in the treatment of 
cardiac diseases which has been documented pharmacologic effects such as antioxidant, 
anti-apoptotic, and anti-inflammatory properties in renal ischemia-reperfusion injury, 
diabetic nephropathy, and nephrotoxicity models. 
Subjects and Methods This review underlines the nephroprotective effect of 
trimetazidine on kidney injury models. For this review, the articles have been searched in 
the databases, including PubMed, Scopus, Web of science, and Google Scholar. The search 
process was provided using these keywords: “Trimetazidine”, “kidney”, “nephrotoxicity”, 
“renal ischemia – reperfusion injury”, and “Protective.” 
Results Present study validates which trimetazidine as a potential agent alleviates kidney 
dysfunction in experimental models through several mechanisms. 
Conclusion Trimetazidine could be considered as promising candidate to treat a variety 
of kidney diseases in the future. 
Keywords Trimetazidine, Oxidative stress, Kidney injury 
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Introduction  

Acute kidney injury (AKI) is associated with high 

mortality and morbidity per year and has become a 

global problem [1, 2]. The long-term consequences of 

AKI are manifested by chronic kidney diseases (CKD) 

in patients that ultimately led to end stage renal 

diseases [2]. The leading causes of AKI include 

ischemia-reperfusion phenomenon, hypoxia, and 

toxin agents [2]. Renal ischemia/reperfusion injury 

(I/R) is known as one of the main outcomes of AKI in 

the clinic, such as kidney transplantation, renal artery 

operations, and nephrectomy [3, 4]. There is growing 

evidence documenting the significant role of reactive 

oxygen species (ROS) in the pathophysiology of 

kidney disease, such as renal I/R, nephrotoxicity, and 

diabetic nephropathy [5-7]. The generation of ROS 

leads to the opening of mitochondrial permeability 

transition pore (mPTP) in the inner mitochondrial 

membrane, initiation of caspase cascade events, 

inflammatory responses, and eventually, cell 

apoptosis [5, 8]. Regarding, ROS is a triggering key of 

these events; therefore, a compound with free radical 

scavenging property could have a considerable role in 

inhibiting ROS formation during kidney injury [6].  

Trimetazidine (1-[2, 3, 4-trimethoxybenzyl] piperazine 

dihydrochloride, TMZ), as an anti-ischemic drug, has 

been used in the treatment of cardiovascular disease. 

TMZ protects myocardium cells via shifting oxidation 

of fatty acid to glucose oxidation to preserve 

adenosine triphosphate (ATP) generation [9]. In 

addition, TMZ as an mPTP inhibitor, could prevent 

mPTP opening that inhibits cell death process, 

indicating a cardio-protective effect in myocardial I/R 

injury [10]. Primary experimental studies have shown 

that TMZ results in the improvement of cardiac and 

kidney function through various molecular and 

cellular pathways [11-13]. In addition, other 

pharmacologic properties of TMZ have been 

documented, including antioxidant, anti-

inflammatory, anti-apoptosis, and anti-fibrotic, as 

well as mitochondrial protection properties in rodent 

experimental models [6, 14-15].  

This review mentions the currently available data 

from experimental studies that confirm the beneficial 

effects of TMZ on renal disease models. The results 

achieved with this drug in the management of renal 

IR, nephrotoxicity, and nephropathy models will also 

be explored. Schematic diagram of TMZ has been 

summarized in Figure 1. 

 

 

Figure1: Trimetazidine indicated potential protective effect against AKI which related to its antioxidative, anti-inflammatory, antiapoptotic 
properties via upregulation of Nrf-2 and downregulation of expression of miR-10a and NF-Ƙβ 
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Materials and Methods 

For this review, original subject-related articles 

published from 2000 up to July 2021 were reviewed in 

the PubMed, Scopus, Web of science, and Google 

Scholar databases. The search process was conducted 

using these keywords: “Trimetazidine”, “Kidney”, 

“Nephrotoxicity”, “Renal ischemia-reperfusion injury”, 

and “Protective.”  

Trimetazidine in renal ischemia-reperfusion injury 

models 

I/R injury is a leading cause of AKI, triggering a 

complex of devastating events, leading to renal cell 

death and kidney dysfunction [3, 5]. Primary tissue 

injury occurs during the ischemic period that is 

associated with the blood supply interruption, 

followed by reperfusion [5]. Although, reperfusion is 

an essential time to maintaining blood supply and 

oxygen delivery, it exacerbates tissue injury [2]. 

Available evidence proved that reperfusion period 

results in oxidative injury through ROS mitochondrial 

formation, as well as caspase cascade activation in 

renal IR injury [2]. ROS overproduction is 

accompanied by oxidative stress and the depletion of 

antioxidant agents, which reduces cellular defense 

against renal IR injury [4, 17]. Therefore, among the 

multiple factors that have increased renal I/R injury 

induced by oxidative stress, the use of a compound to 

inhibit this event is more valuable [17]. 

It has been shown that TMZ pretreatment has 

elevated glutathione (GSH) content, catalase (CAT), 

superoxide dismutase (SOD), and glutathione 

peroxidase (GPx) activity and inhibited lipid 

peroxidation in the rat kidney [18, 19]. In line with this 

study, treatment with TMZ significantly enhanced the 

SOD level, and decreased kidney malondialdehyde 

(MDA) [20]. In addition, TMZ pretreatment before 

ischemia significantly increased Akt, endothelial nitric 

oxide synthase (eNOS), and heme oxygenase-1(HO-1) 

expressions [18]. Likewise, TMZ has been able to 

enhance hypoxia inducible factor-1α (HIF-1α), which 

is a defense mechanism against ischemic event and a 

novel candidate in the treatment of AKI [18, 21]. 

Regarding this, TMZ could modify nitric oxide (NO) 

level in warm renal I/R injury model, which is 

identified as a factor to stabilize of HIF-1α [22]. These 

findings taken together recommended that TMZ was 

able to ameliorate renal functional parameters 

(creatinine clearance and Na+ reabsorption rate) 

through modulating HIF-1α / HO-1/ eNOS signaling 

pathway [18]. 

Experimental studies reported that I/R injury caused 

kidney dysfunction via depletion of renal antioxidant 

levels by excessive ROS production. TMZ 

administration before the initiation of reperfusion 

could reduce lipid peroxidation induced by renal IR 

injury coincided with augmentation of the antioxidant 

enzymes system (CAT, SOD, and GPx) to cellular 

protection [12, 23]. Thus, administration of TMZ 

preserved the enzymatic antioxidant levels, and 

significantly decreased MDA level, which is the index 

of lipid peroxidation [12, 23]. These were consistent 

with an increasing of nuclear factor erythroid 2-

related factor 2 (Nrf-2) expression by the TMZ 

administration in oxidative damage induced by I/R. 

Nrf-2 is crucial cytoprotective agent in stress situation 

that protects kidney through adjusting antioxidant 

agents [12]. Moreover, renal function parameters 

such as plasma BUN, Cr and glomerular filtration rate 

(GFR), fractional exertion of sodium as tubular 

function index ameliorated with TMZ in I/R exposed 

rats. In I/R rats, caspase-3 was activated, resulting in 

the activation of Bax protein, and renal cell apoptosis 

[23]. Apoptosis is identified as main cause of renal I/R 

injury. TMZ remarkably result in a reduction of Bax 

mRNA expression, reduced caspase-3 mRNA 

expression, and increased expression of Bcl-2 [11]. 

MicroRNA-10a, as renal tissue specific microRNA, is 

extracted from renal tissue into the plasma against 

renal cell injury [12, 23]. Treatment of TMZ reduced 

microRNA-10a in the plasma, indicating a decline in 

renal cell injury caused by oxidative stress [11]. 

Post renal I/R treatment of TMZ could impact on 

fibrosis and apoptosis by inhibition of matrix 

metalloproteinase (MMP), Bax, and Bcl-2 

overexpression in the kidney tissue. These suggest 

that TMZ exerts its renoprotective effects through 

anti-fibrotic and anti-apoptotic signaling pathways 

[24]. In line these studies, the long-term effect of TMZ 

showed an inhibition of fibrotic agents such as α-

smooth muscle actin (α-SMA) and vimentin 

expressions and a limitation of apoptosis rate which 

associated with attenuation of significantly changed 

GFR in renal warm I/R rat model [25]. 

Histopathological of examination kidney tissue from 

renal IR rats exhibited a more intense loss of brush 



 
 
 

 

Jundishapur 
Journal of Physiology 
 

 
May 2023. Vol 2. No 2 

 Amini N, et al. Trimetazidine could ameliorate kidney dysfunction. JJP. 2023; 2(2): 90-98 

 

93 

border and proximal tubular injury, indicating tubular 

necrosis which diminished by TMZ [25]. Prophylactic 

administration of TMZ before ischemia reduced renal 

dysfunction confirmed by a diminished BUN, and Cr 

levels in the serum. Lipid peroxidation and 

inflammatory mediators such as tumor necrosis 

factor-α (TNF-α) were suppressed and activation of 

myeloperoxidase (MPO) in the kidney prohibited by 

TMZ supplementation. Likewise, TMZ caused 

replenishment of ATP and GSH in renal tissue that 

evidenced by the amelioration in histopathological 

aspects [26]. An experimental study showed that TMZ 

provided an outstanding role in ATP, and adenosine 

diphosphate (ADP) synthesis to preserve cell’s energy 

following disruption of mitochondrial membrane 

caused by kidney I/R injury in rat [27]. Recently, the 

effect of TMZ on oxidative stress induced by IR in 

isolated kidney mitochondria displayed a reduction of 

mitochondrial ROS, MDA content and an increased 

mitochondrial GSH that would lead to repression of 

mitochondrial stress pathway [15]. These findings 

taken together recommended the primary mechanism 

of TMZ was elevation of antioxidant capacity, and 

prevention of lipid peroxidation in the kidney.  

Nephrotoxicity 

Toxicity induced by drug and heavy metals is well 

known widespread source of AKI [29]. These toxic 

agents have an important role in induction of 

nephrotoxicity by ROS production and disturbing of 

the cellular antioxidant system [30]. The most 

common pathological findings of nephrotoxicity 

include glomerular atrophy, tubular cell toxicity, 

apoptosis, and potential inflammatory response [31].  

Trimetazidine in cisplatin nephrotoxicity 

Cis-Diammineplatinum (II) dichloride (CSP), is one of 

the most widely used anti-cancer drugs in malignancy 

[32]. Excessive side effects of this drug in other organs 

(Nephrotoxicity, nausea and vomiting, bone marrow 

suppression, and neurotoxicity) have limited the use 

of this drug [33]. Among of these complications, the 

most common side effects of CSP are nephrotoxicity 

[33]. Overgeneration of free radical oxygen and 

oxidative stress are main mechanism of CSP 

nephrotoxicity [31]. Oxidative stress caused by CSP 

leads to a decrease in the level of antioxidants, 

especially glutathione, and ultimately accompanied 

by renal cell impairment [34]. Thus, an antioxidant 

agent can play a substantial role to scavenge free 

radical oxygen for protecting cells [35]. Results from 

primary studies confirm support the hypothesis 

which TMZ has a nephroprotective effect on CSP 

toxicity that might be attributed to its ability on 

enhancing of SOD activity and renal GSH and a 

decreasing MDA level. In response to oxidative stress, 

activation of NF-Kβ leads to the generation of 

inflammatory mediators, consist of IL-6, and TNF-α 

which was significantly prohibited by TMZ [36].  

Trimetazidine in gentamycin nephrotoxicity 

Gentamycin is classified as an aminoglycoside 

antibiotic, is used to treat bacterial infections. 

Nephrotoxicity is identified as one of the side effects 

of gentamycin in the clinic. Several studies have 

shown that gentamycin nephrotoxicity caused by 

oxidative stress led to renal proximal convoluted 

tubules injury [37, 38]. Findings of an experimental 

study indicated that pretreatment with TMZ 

improved BUN and Cr in the plasma, as well as, 

excretion of γ-glutamyl transpeptidase and N-

acetylglucosaminidase enzymes was normal in the 

urine, indicating the conservation of tubular function 

[39]. However, the mechanism of TMZ on gentamycin 

nephrotoxicity has not been investigated. Based on 

previous study, TMZ might have protective effect on 

nephrons through antioxidant properties in 

gentamycin nephrotoxicity [18].  

Trimetazidine in cyclosporine nephrotoxicity 

Cyclosporine A (CsA) is a major immunosuppressive 

factor which plays an important role in the 

autoimmune diseases and survival of the organs after 

transplantation [40, 41]. However, long-term use of 

CsA followed by progression of chronic renal failure in 

the patients [42, 43]. A recent report suggested that 

oxidative stress is considered as a causative agent in 

nephrotoxicity induced by CsA [44]. Findings from an 

in vivo study indicated that TMZ by its removing 

effects on free radicals could prevent lipid 

peroxidation formation in a rat model of CsA induced 

nephrotoxicity. Thus, inhibition of lipid peroxidation 

was accompanied by improvement of renal function 

in CsA treated rats evidenced by amelioration of 

morphological alterations [44]. In contrast to these 

findings, an experimental study showed that TMZ 

administration along with CsA led to a reduction of 

renal function on CsA exposed rats [45]. This 
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dissimilarity might be related to species differences, 

gender, and the doses of TMZ and CsA, or 

nephrotoxicity model [46, 47]. 

Trimetazidine in glycerol nephrotoxicity 

Rhabdomyolysis is a clinical syndrome that results 

from injury to skeletal muscle and the leakage of 

muscle cell contents into the extracellular fluid and 

blood circulation [48]. Rhabdomyolysis is well known 

as one of the causes of acute renal failure (ARF) [48]. 

Glycerol induced rhabdomyolysis is an experimental 

model which is similar to the development of ARF due 

to trauma or muscle damage in humans, leading to 

extensively proximal and distal tubular injury [49]. 

Exploration of an in vivo study confirmed that 

oxidative stress induced by glycerol increased indexes 

of renal functional (BUN, Cr, creatinine clearance, 

urea clearance). In addition to, antioxidant system as 

a potential defense mechanism, including SOD, CAT, 

glutathione reductase, and reduced glutathione 

against stress situation significantly was disrupted. 

These changes reverted by TMZ via antioxidant 

properties [49].  

Trimetazidine in mercury nephrotoxicity  

Mercury is identified as one of heavy metals which 

its concentration is increasing in the environment 

[50]. Since the kidney provides an important role in 

detoxification and excretion of toxic agents, as a 

result more toxins are concentrated in the kidney. 

Regarding, proximal tubule cells are vulnerable 

against pollutants agents and accumulation of this 

agents in the kidney leads to AKI [51]. One of the most 

common causes of kidney dysfunction following 

exposure to toxins is oxidative stress [52]. Renal injury 

induced by mercuric chloride (HgCl2) demonstrated a 

reduction of Cr clearance, an elevation of serum BUN 

and Cr, increasing of urinary flow, and glucosuria that 

implies renal dysfunction through generation of renal 

lipid peroxidation and depletion of GSH content [52]. 

Treatment with TMZ exerted an improvement of kidney 

function and amelioration of GSH level, indicating a 

protective effect of TMZ on nephrotoxicity induced by 

HgCl2 [52]. 

Trimetazidine in diabetic nephropathy 

Diabetic nephropathy (DN) is considered as the main 

reason of chronic kidney diseases and the prevalence 

rate of DN is increasing in the worldwide [53, 54]. 

Streptozotocin (STZ), an antibiotic extracted by 

Streptomyces achromogenes, has been employed in 

experimental diabetes model via its toxic action on 

pancreatic β-cells [55]. The primary proposed 

mechanism to cytotoxic action of STZ is oxidative 

stress that discharges antioxidative agents, and 

facilitates free radicals oxygen production [55]. 

Studies have shown that TMZ was effective in 

treatment of various diseases, including heart 

diseases, renal I/R injury, and nephrotoxicity through 

numerous mechanism such as free radical oxygen 

eliminating, switching energy metabolism from fatty 

acid oxidation to glucose oxidation, and anti-

apoptosis [12, 14].  In vivo and in vitro studies 

confirmed that TMZ could conserve kidney functional 

indicators in diabetic rodent [56]. This preservative 

effect of TMZ confirmed with a suppression of 

pathological changes of DN, particularly for renal 

fibrosis [56]. Epithelial to-mesenchymal transition 

(EMT) is well known as a main key triggering to 

tubulointerstitial fibrosis [57]. TMZ ameliorated EMT 

induced by high fat and high glucose (HFG) via 

attenuation of oxidative stress in forkhead box O1 

(FoxO1) / sirtuin1 (Sirt1) pathway. Expression of 

FoxO1 is modulated by Sirtu1 [58]. Sirt1, is an 

important regulator of cellular energy metabolism 

that inhibits oxidative stress in AKI [59]. 

Administration of TMZ result in up regulation of Sirt1 

and Sirt3 levels in STZ- induced diabetic rats that 

confirmed by in vitro study. HFG environment 

elevated acetylation of FoxO1 level and TMZ 

intervention could reverse this effect. On the other, 

an increase SOD gene expression was reported by 

TMZ treatment in diabetic rat but significantly 

decreased after silencing Sirt1[56]. Nicotinamide 

adenine denuleatide (NAD+) is substrate for sirt1, 

TMZ pretreatment increased NAD+ and the ratio of 

NAD+ to NADH in DN rats which emphasizes that TMZ 

has a key role in regulating intracellular NAD+ content 

[56]. Moreover, transforming growth factor beta 

(TGF-β1) provided a leading role in renal fibrosis. The 

interaction of TGF-β with receptors leads to a cellular 

response by the Smad-dependent pathway. TMZ 

could significantly reduce TGF-β1experssion and 

deacetylated of Smad, suggesting antifibrotic effect 

of TMZ [56]. This reveals that the beneficial 

mechanisms of TMZ against the kidney injury in 

diabetic situation are comprised by FoxO1/ROS 

pathway and TGF-β1/Smad signaling in a NAD+/Sirt1 
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dependent manner. An increase in expression of 

fibronectin, Inducible nitric oxide synthase (iNOS) 

expression, and proteinuria were seen in STZ-induced 

experimental model which these disorders could 

improve by TMZ [60]. In addition, histopathological 

examination of kidney tissue from diabetic rats 

displayed the disruption of kidney structure, tubular 

dilation, and disintegration of brush borders in tubular 

epithelium which were all relieved by TMZ [60]. 

Another experimental study proved that oxidative 

stress displays an outstanding role in the nephropathy 

caused by diabetes. Also, diminished SOD, CAT 

activities, GSH content, and an enhancement of MDA 

level was seen in rat kidney treated by STZ [7]. TMZ 

notably result in an improvement of kidney function via 

preserving of the antioxidant system and diminishing 

lipid peroxidation [7]. 

In vitro study  

In vitro study showed that TMZ reduced E-cadherin, 

and α-SMA in HK-2 cells. Moreover, TMZ suppressed 

the generation of ROS induced by high fat and high 

glucose (HFG) in HK-2 cells. The Sirt1 protein level was 

diminished in HFG environment, and this alteration 

was enhanced by TMZ. HFG environment elevated 

acetylation of FoxO1 level, and TMZ intervention 

could reverse this effect. TMZ ameliorated EMT 

induced by high fat and high glucose (HFG) via 

attenuation of oxidative stress in forkhead box O1 

(FoxO1) / sirtuin1 (Sirt1) pathway. Expression of 

FoxO1 is modulated by sirtu1. NAD+ is considered as 

substrate for Sirt1, the expression of Sirt1 increased 

with different concentrations of NAD+ in HFG-exposed 

HK-2 cells. TMZ increased NAD+ and NAD+/NADH 

levels in diabetic rats. TMZ inhibited ROS signaling to 

ameliorate EMT in HFG environment through up 

regulating Sirt1[59]. 

Conclusion 

Based on the mentioned experimental studies, TMZ 

represents renoprotective properties through 

antifibrosis, anti-apoptosis, anti-inflammatory, free 

radical scavenging, and mitochondrial protection 

effects. However, little research has been done on 

TMZ effect on various experimental of AKI and CKD. 

Therefore, TMZ might consider as a potential 

promising candidate in the prevention and treating a 

variety of kidney dysfunction after completing the 

clinical trial phases in the future. 
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